Column Method: An Analytical Approach for the Removal of Chromium by Using Iron Oxide Nanoparticles

نویسنده

  • YOGENDRA SINGH
چکیده

Nanoparticles are being intensively investigated because of their unique optical, electrical and catalytic properties which make them a potential material for utilization in the field of medicine electronic and environmental issues. This paper is concerned with the removing a heavy metal, Chromium, from its aqueous solution by Iron oxide nanoparticle filtration. Solutions of varying chromium concentrations (50-250ppm) were prepared and passed through a column of Iron oxide nanoparticle. Effluent samples collected at different column depths were analyzed for the concentration of Chromium ions using an Atomic Absorption Spectrometer. The injection rate and pH of the influent solution were also varied to study their effects on the Chromium removal efficiency by Iron oxide nanoparticle. A series of curves were constructed to determine the capacity of Iron oxide nanoparticle column at various depths. The removal efficiency was found to be in the range 99-100%. These high removal efficiencies were likely attributed to the strong affinity of chromium ions to the surface of Iron oxide nanoparticle particles. It can be concluded that due to their relatively high adsorption capability, Iron oxide nanoparticle has the potential to be utilized for the removal of heavy metals from water and waste water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Mercury and Arsenic Metal Pollutants from Water Using Iron Oxide Nanoparticles Synthesized from Lichen Sinensis Ramalina Extract

Background & objectives: The import of heavy metals into various sources of drinking water supply is one of the major problems of water quality, especially in industrial areas. The aim of this study was to investigate the ability of mercury and arsenic metal pollutants to be removed from aqueous solutions using green oxide nanoparticles synthesized by green method. For this purpose, the extract...

متن کامل

Using selective sequential extraction techniques to evaluate tendency of soil fractions in Cd removal by Fe3O4 nanoparticles in continuous flow system

Use of nanotechnology has proven to be a promising approach toward remediation of all phases of environment. The aim of this work is to investigate the effects of different parameters on using iron III oxide nanoparticles in a continuous flow configuration for the removal of Cd2+ ionsfrom contaminated soils. Also selective sequential extraction tests are carried out to evaluate the nanoparticle...

متن کامل

Removal of Hexavalent Chromium from Aqueous Solutions Using Magnetic Nanoparticles Coated with Alumina and Modified by Cetyl Trimethyl Ammonium Bromide

Introduction: The development of an effective method regarding chromium removal from the environment is of great importance. Therefore, the present study aimed to examiner magnetic nanoparticles coated with alumina modified by Cetyl Trimethyl Ammonium Bromide (CTAB) in the removal of Cr6+ through magnetic solid phase extraction method. Materials & Methods: At first, iron oxide nanoparticles ...

متن کامل

Photocatalytic Removal of Hexavalet Chromium from Aqueous Solution Using Zinc Oxide Nanoparticle Stabilized On Zeolite

Backgrounds & objectives: Heavy metals, such as chromium, are the most common pollutants usually found in high concentrations in industrial wastewater and cause damages to aquatic environments and endanger the health of living organisms, especially human. Therefore, the purpose of this research was to investigate the photocatalytic removal of hexavalent chromium from aqueous solution using UV/Z...

متن کامل

Adsorption and Desorption Process of Chromium Ions Using Magnetic Iron Oxide Nanoparticles and Its Relevant Mechanism

In this study adsorption of Cr(VI) from aqueous solution by Fe3O4 nanoparticles was investigated. Desorption process and recovery of nanoparticles using different solutions were then carried out, and it was observed that NaOH (0.5M) can remove 90% of adsorbed chromium ions. Following the completion of adsorption/ desorption cycles, it was determined that nanoparticles have still had a high abil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011